Effects of fumarates on circulating and CNS myeloid cells in multiple sclerosis
نویسندگان
چکیده
OBJECTIVE Dimethyl fumarate (DMF), a therapy for relapsing-remitting multiple sclerosis (RRMS), is implicated as acting on inflammatory and antioxidant responses within both systemic immune and/or central nervous system (CNS) compartments. Orally administered DMF is rapidly metabolized to monomethyl fumarate (MMF). Our aim was to analyze the impact of fumarates on antiinflammatory and antioxidant profiles of human myeloid cells found in the systemic compartment (monocytes) and in the inflamed CNS (blood-derived macrophages and brain-derived microglia). METHODS We analyzed cytokine and antioxidant expression in monocytes from untreated or DMF-treated RRMS patients and controls, and in monocyte-derived macrophages (MDMs) and microglia isolated from adult and fetal human brain tissue. RESULTS Monocytes from multiple sclerosis (MS) patients receiving DMF had reduced expression of the proinflammatory micro-RNA miR-155 and of antioxidant genes HMOX1 and OSGIN1 compared to untreated MS patients; similar changes were observed in patients receiving FTY720 and/or natalizumab. In vitro addition of DMF but not MMF to MDMs and microglia inhibited lipopolysaccharide-induced production of inflammatory cytokines and increased expression of the antioxidant gene HMOX1 in the absence of significant cytotoxicity. INTERPRETATION Our in vivo-based observations that effects of DMF therapy on systemic myeloid cell gene expression are also observed with FTY720 and natalizumab therapy suggests that the effect may be indirect, reflecting reduced overall disease activity. Our in vitro results demonstrate significant effects of DMF but not MMF on inflammation and antioxidant responses by MDMs and microglia, questioning the mechanisms whereby DMF therapy would modulate myeloid cell properties within the CNS.
منابع مشابه
O 9: Immunomodulatory Effects of Neural Stem Cell on Multiple Sclerosis: A Systematic Review
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory demyelinating disorders of central nervous system (CNS). While the cause is unclear, the fundamental mechanism is thought to be destruction of myelin sheaths of neurons through immune system. One of the approaches being proposed in EAE therapy is neural stem cells (NSCs) trans...
متن کاملمروری بر فینگولیمد؛ اولین داروی خوراکی برای مالتیپلاسکلروزیس
Multiple sclerosis (MS) is a progressive neurological autoimmune disease that usually starts in the late third and early forth decades of life. Demyelination of neurons in the central nervous system (CNS) and, subsequently, loss of nerve cells is the known disease pathogenesis. The disease is controlled by a class of medicines which are mainly immunomodulators. Fingolimod (FIN) is...
متن کاملEffects of Estrogen and Progesterone on Different Immune Cells Related to Multiple Sclerosis
Multiple Sclerosis (MS) is a chronic autoimmune disease of young adults with an unknown etiology, but cellular immune responses and inflammation has a pivotal role in this regard. The higher incidence of MS among women indicates the possible involvement of female sex hormones on the disease course. Progesterone and estrogen are the most important sexual hormones in women. They exert different i...
متن کاملP 140: Stem Cells in Multiple Sclerosis
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Inflammation caused by immune cells destroy the myelin and then axon. CNS failure to complete repair results in permanent disabilities. Some types of stem cells have special potentials to repair these injuries and even cure MS. Neural crest stem cells with a mutual origin with CNS and the ability of differen...
متن کاملP 150: The Role of Blood Brain Barrier Restoration in the Multiple Sclerosis
Blood Brain Barrier (BBB) is a specialized non fenestrate barrier that formation by the endothelial cells and controls the transportation of the cells and molecules in to the brain. Reducing in function of BBB is one of disruptions in neurological diseases like multiple sclerosis. Endothelial progenitor cell (EPC) help to the BBB to control the diapedesis of inflammatory cells & molecules in to...
متن کامل